Preprocess flow data#

In this notebook, we load an fcs file into the anndata format, move the forward scatter (FCS) and sideward scatter (SSC) information to the .obs section of the anndata file and perform compensation on the data. Next, we apply different types of normalisation to the data.

import readfcs
import pytometry as pm
%load_ext autoreload
%autoreload 2

Read data from readfcs package example.

path_data = readfcs.datasets.example()
adata = pm.io.read_fcs(path_data)
adata
AnnData object with n_obs × n_vars = 65016 × 16
    var: 'n', 'channel', 'marker', '$PnB', '$PnR', '$PnG'
    uns: 'meta'

Reduce features#

We split the data matrix into the marker intensity part and the FSC/SSC part. Moreover, we move all height related features to the .obs part of the anndata file. Notably. the function split_signal checks if a feature name is either FSC/SSC or whether a name endswith -A for area related features and -H for height related features.

Let us check the var_names of the features and the channel names. In this example, the channel names have been cleaned such that none of the markers have the -A or -H suffix.

adata.var
n channel marker $PnB $PnR $PnG
FSC-A 1 FSC-A 32 262207 1
FSC-H 2 FSC-H 32 262207 1
SSC-A 3 SSC-A 32 261588 1
KI67 4 B515-A KI67 32 261588 1
CD3 5 R780-A CD3 32 261588 1
CD28 6 R710-A CD28 32 261588 1
CD45RO 7 R660-A CD45RO 32 261588 1
CD8 8 V800-A CD8 32 261588 1
CD4 9 V655-A CD4 32 261588 1
CD57 10 V585-A CD57 32 261588 1
CD14 11 V450-A CD14 32 261588 1
CCR5 12 G780-A CCR5 32 261588 1
CD19 13 G710-A CD19 32 261588 1
CD27 14 G660-A CD27 32 261588 1
CCR7 15 G610-A CCR7 32 261588 1
CD127 16 G560-A CD127 32 261588 1

We use the channel column of the adata.var data frame to split the matrix.

pm.pp.split_signal(adata, var_key="channel")
adata
AnnData object with n_obs × n_vars = 65016 × 13
    obs: 'FSC-A', 'FSC-H', 'SSC-A'
    var: 'n', 'channel', 'marker', '$PnB', '$PnR', '$PnG', 'signal_type'
    uns: 'meta'

The data matrix was reduced by three features (FSC-A, FSC-H and SSC-A).

Compensation#

Next, we compensate the data using the compensation matrix that is included in the FCS file header. Alternatively, one may provide a custom compensation matrix.

The compensate function matches the var_names of adata with the column names of the spillover matrix to compensate the correct channels.

pm.pp.compensate(adata)
5499 NaN values found after compensation. Please adjust compensation matrix.
/home/runner/work/pytometry/pytometry/.nox/build-3-9/lib/python3.9/site-packages/pytometry/preprocessing/_process_data.py:177: RuntimeWarning: overflow encountered in cast
  adata.X[:, ref_idx] = X_comp

Normalize data#

In the next step, we normalize the data. By default, normalization is an inplace operation, i.e. we only create a new anndata object, if we set the argument inplace=False. We demonstrate three different normalization methods that are build in pytometry:

  • arcsinh

  • logicle

  • bi-exponential

adata_arcsinh = pm.tl.normalize_arcsinh(adata, cofactor=150, inplace=False)
adata_logicle = pm.tl.normalize_logicle(adata, inplace=False)
/home/runner/work/pytometry/pytometry/.nox/build-3-9/lib/python3.9/site-packages/pytometry/tools/_normalization.py:166: RuntimeWarning: invalid value encountered in scalar subtract
  y = (ae2bx + p["f"]) - (ce2mdx + value)
adata_biex = pm.tl.normalize_biExp(adata, inplace=False)